
On Mining Distances out of Massive
Time-Evolving Graphs

Applications, Algorithms, Experiments, Open Problems

Mattia D’Emidio1

1Assistant Professor @ University of L’Aquila
Lecturer/Scientific Collaborator @ Gran Sasso Science Institute

email: mattia.demidio@{univaq,gssi}.it
web: www.mattiademidio.com

NetworKit Day 2020
October 15, 2020

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 1 / 48

1 Mining Distances: Problem

2 Mining Distances vs Modern Applications

3 Scalable Mining of Distances

4 2-hop-cover

5 2-hop-cover and Time-Evolving Graphs

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 2 / 48

Outline

1 Mining Distances: Problem

2 Mining Distances vs Modern Applications

3 Scalable Mining of Distances

4 2-hop-cover

5 2-hop-cover and Time-Evolving Graphs

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 3 / 48

Mining Distances: Problem

Mining Distances from (Di)Graphs
Given (di)graph G = (V,A)

Given sequence of (distance) queries {q(s1, t1), q(s2, t2), . . . } for pairs
of vertices si, ti ∈ V

Report distance d(si, ti) as fast as possible
d(si, ti): distance = weight of a shortest path from si to ti in G

Related variants
Reachability queries: report yes if there exist a path from si and ti in
G, no otherwise
Path-reporting queries: report whole shortest path (sequence of ver-
tices/arcs) if any, empty set otherwise

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 4 / 48

One of most studied problems in Computer Science/Engineering
Several highly impacting applications in real-world

Routing in communication networks
Route/Journey planning road/transport networks
Context Aware Search, web indexing
Data mining for linked data, Graph Databases
Social Networks analysis, Social Engineering
Bioinformatics, Top-k Nearest Keyword Search

Huge amount of research/literature
Algorithms, data structures, bounds and complexity results

Textbook/Standard Solution
Solve SSSP (upon query), e.g. Dijkstra’s algorithm
Cost per query: (for an n-vertex, m-arc graph)

O(m+ n logn) time, O(n) space
Best known method for generally positively weighted digraphs

Problem: scalability issues against "modern inputs"

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 5 / 48

Outline

1 Mining Distances: Problem

2 Mining Distances vs Modern Applications

3 Scalable Mining of Distances

4 2-hop-cover

5 2-hop-cover and Time-Evolving Graphs

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 6 / 48

Mining Distances vs Modern Applications

Big Graphs, big problems
Polynomial/linear not good enough
O(m + n log n) query algorithm leads to (tens of) seconds per query
when graphs are massive in size (≥ 105 vertices/arcs)
Unsustainable time overhead, especially for interactive applications
executing thousands/millions queries a day

Graphs emerging from modern applications are indeed massive
Billions of vertices/arcs

e.g. Twitter, Facebook, Google Maps, WWW, Internet
Moreover they are "complex"
No topological features to exploit for accelerating queries

e.g. regularity, planarity, power-law degree distributions (communica-
tion networks, Internet, Web)

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 7 / 48

Mining Distances vs Modern Applications

Alternative to standard: use of preprocessing
Quite well established strategy to handle large inputs
1. Solve APSP once, e.g. Floyd-Warshall algorithm or repeated Dijkstra’s
2. Store outputs in a Distance Matrix
3. Retrieve distances upon query by accessing right DM location

Cost per query: O(1) time/space to access (optimal)
Preprocessing costs

O(nm+ n2 logn) ∈ O(n3) time
n× n = Θ(n2) extra space

Problem: scalability issues remain
Θ(n2) space is impractical (Thousands of GBs when n ≥ 106)
O(n3) time is unacceptable (Tens of days when n ≥ 106)

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 8 / 48

Query Time vs Extra Space and Prepr. Time

Query Time

Extra Space

(O(1),O(m + n log n))

Dijkstra’s

?

(O(1),O(1))

(O(n2), O(1))

Distance Matrix

Query Time

Prepr. Time

(O(1),O(m + n log n))

Dijkstra’s

?

(O(1),O(1))

(O(n3), O(1))

Distance Matrix

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 9 / 48

Outline

1 Mining Distances: Problem

2 Mining Distances vs Modern Applications

3 Scalable Mining of Distances

4 2-hop-cover

5 2-hop-cover and Time-Evolving Graphs

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 10 / 48

Scalable Mining of Distances

Very active research field: various techniques to find trade-offs
1. Approximation
2. Sampling
3. Parallelism
4. Restriction to special classes of graphs

Some literature (non–exhaustive list):
[Potamias+ CIKM 2009][Elkin+ SODA 2015]
[Thorup+ JACM 2015][Alstrup+, SODA 2016]
[Cohen+, SODA 2002, SIAM J. Comp. 2003]
[Thorup+ JACM 2005][Sarma+ WSDM 2010]
[Abraham+ ESA 2012][Akiba+ SIGMOD 2013][Delling+ ESA 2014]

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 11 / 48

Examples of Trade-Off
Query Time

Prepr. Time

?

(O(1),O(m + n log n))

Dijkstra’s

(O(1),O(1))

(O(n3), O(1))

Distance Matrix

Query Time

Extra Space

(O(1),O(m + n log n))

Dijkstra’s

?

(O(1),O(1))

(O(n2), O(1))

Distance Matrix

M. Thorup, U. Zwick: Approximate distance oracles. J. ACM 2005
Based on building graph balls of exp. increasing diameters
Preprocessing in O(kmn

1
k) expected time

Extra space O(kn1+ 1
k) – Query in O(k) time for any k ≥ 1

Distances have stretch ≤ 2k − 1 (i.e. approximated for k > 1)
Equivalent to distance matrix for exact distances k = 1

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 12 / 48

Examples of Trade-Off
Query Time

Prepr. Time

?

(O(1),O(m + n log n))

Dijkstra’s

Thorup+ 2005

(O(1),O(1))

(O(n3), O(1))

Distance Matrix

Query Time

Extra Space

(O(1),O(m + n log n))

Dijkstra’s

? Thorup+ 2005

(O(1),O(1))

(O(n2), O(1))

Distance Matrix

M. Thorup, U. Zwick: Approximate distance oracles. J. ACM 2005
Based on building graph balls of exp. increasing diameters
Preprocessing in O(kmn

1
k) expected time

Extra space O(kn1+ 1
k) – Query in O(k) time for any k ≥ 1

Distances have stretch ≤ 2k − 1 (i.e. approximated for k > 1)
Equivalent to distance matrix for exact distances k = 1

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 12 / 48

Examples of Trade-Off
Query Time

Prepr. Time

?

(O(1),O(m + n log n))

Dijkstra’s

Thorup+ 2005

(O(1),O(1))

(O(n3), O(1))

Distance Matrix

Query Time

Extra Space

(O(1),O(m + n log n))

Dijkstra’s

? Thorup+ 2005

(O(1),O(1))

(O(n2), O(1))

Distance Matrix

A. D. Sarma, S Gollapudi, M. Najork, R. Panigrahy: A sketch-based dis-
tance oracle for web-scale graphs. WSDM 2010: 401-410

Simplification of method of Thorup and Zwick via seed nodes
Same theoretical guarantees on preprocessing and space
Query in Õ(n

1
c) time for any c ≥ 1, stretch 2c− 1

Better behavior experimentally, again equivalent to distance matrix
for c = 1

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 13 / 48

Examples of Trade-Off
Query Time

Prepr. Time

?

(O(1),O(m + n log n))

Dijkstra’s

Thorup+ 2005

Sarma+ 2010

(O(1),O(1))

(O(n3), O(1))

Distance Matrix

Query Time

Extra Space

(O(1),O(m + n log n))

Dijkstra’s

Thorup+ 2005

Sarma+ 2010

(O(1),O(1))

(O(n2), O(1))

Distance Matrix

A. D. Sarma, S Gollapudi, M. Najork, R. Panigrahy: A sketch-based dis-
tance oracle for web-scale graphs. WSDM 2010: 401-410

Simplification of method of Thorup and Zwick via seed nodes
Same theoretical guarantees on preprocessing and space
Query in Õ(n

1
c) time for any c ≥ 1, stretch 2c− 1

Better behavior experimentally, again equivalent to distance matrix
for c = 1

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 13 / 48

A Notable Trade-Off
Query Time

Prepr. Time

?

(O(1),O(m + n log n))

Dijkstra’s

Thorup+ 2005

Sarma+ 2010

(O(1),O(1))

(O(n3), O(1))

Distance Matrix

Query Time

Extra Space

(O(1),O(m + n log n))

Dijkstra’s

? Thorup+ 2005

Sarma+ 2010

(O(1),O(1))

(O(n2), O(1))

Distance Matrix

E. Cohen, E. Halperin, H. Kaplan, U. Zwick: Reachability and Distance
Queries via 2-Hop Labels. SIAM J. Comput. 32(5): 1338-1355 (2003)

Based on the notion of 2-hop-cover ("compact" representation of
transitive closure)
Several works followed on the same ideas [Abraham+ ESA 2012] [Ak-
iba+ EDBT 2012, SIGMOD 2013] [Delling+ ESA 2014]

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 14 / 48

A Notable Trade-Off
Query Time

Prepr. Time

?

(O(1),O(m + n log n))

Dijkstra’s

Thorup+ 2005

Cohen+ 2003

Sarma+ 2010

(O(1),O(1))

(O(n3), O(1))

Distance Matrix

(O(n3),O(n))

Query Time

Extra Space

(O(1),O(m + n log n))

Dijkstra’s

? Thorup+ 2005

Cohen+ 2003

(O(n2),O(n))

Sarma+ 2010

(O(1),O(1))

(O(n2), O(1))

Distance Matrix

E. Cohen, E. Halperin, H. Kaplan, U. Zwick: Reachability and Distance
Queries via 2-Hop Labels. SIAM J. Comput. 32(5): 1338-1355 (2003)

Based on the notion of 2-hop-cover ("compact" representation of
transitive closure)
Several works followed on the same ideas [Abraham+ ESA 2012] [Ak-
iba+ EDBT 2012, SIGMOD 2013] [Delling+ ESA 2014]
Worse worst-case but effective in practice with suited heuristics

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 14 / 48

Remark

On the importance of experimentation and tools for (massive)
graph processing

Most results on shortest-path/distance queries in complex net-
works are of experimental nature
For general graphs no known exact approach provably better
than Dijkstra’s and APSP+Distance Matrix in terms of the three
criteria (query time, extra space, preprocessing time)
Experimental efforts to determine best solutions
Of paramount importance having effective, easy to use toolkits
for

manipulation, generation, analysis of large-scale complex net-
works
efficient implementation of graph algorithms
many thanks to NetworKit community for their effort (more details
later)

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 15 / 48

Outline

1 Mining Distances: Problem

2 Mining Distances vs Modern Applications

3 Scalable Mining of Distances

4 2-hop-cover

5 2-hop-cover and Time-Evolving Graphs

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 16 / 48

2-hop-cover
Given directed weighted graphs G = (V,A,w) 1

n = |V | vertices, m = |E| arcs, weight func. w : A→ R+

Let Puv be collection of shortest paths for pair u, v ∈ V in G

Let P =
⋃

u,v∈V
Puv be collection of all shortest paths of G

Hop: a triple (h, u, v) where h is a (simple) path and u, v are end-
points of such path

A set of hops H is a 2-hop-cover of G if and only if:
For any s, t ∈ V such that Pst 6= ∅ (pair of connected vertices)
There exists a (shortest) path p ∈ Pst and two hops (h1, s, h), (h2, h, t) ∈
H such that

p = h1 ⊕h h2

i.e. p can be reconstructed as concatenation at hub vertex h

1Special cases easy to derive
Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 17 / 48

2-hop-cover
In other words

A 2-hop-cover hop set H allows to reconstruct (the weight of) one
shortest path by concatenating two (shortest) paths emanating from
s and t at a suited hub vertex
H is said to cover G (or to satisfy cover property)
|H| is the size of the 2-hop-cover

Naive building of a 2-hop-cover
1. Start with H = ∅
2. Solve APSP once
3. For any found shortest path p from s to t

H = H ∪ {(∅, s, s), (p, s, t)}
Or H = H ∪ {(h1, s, h), (h2, h, t)} Where h1 and h2 are any two disjoint
subpaths of p emanating from a common vertex h

Result: H has size O(n2) (# triples)
Moreover retrieval of shortest paths fromH requires searching (O(|H|))

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 18 / 48

2-hop-cover

More efficient retrieval
Convert into 2-hop-cover distance labeling data structure
Well known from distributed computing
Stores data at each vertex in label form
Allows retrieval of distances/paths by accessing only labels of in-
volved vertices

Populating 2-hop-cover distance labeling from 2-hop-cover hop set H:
For any (h1, s, h), (h2, h, t) ∈ H

add entry (h,w(h1)) to Lo(s) (outgoing label of s) with w(h1) = d(s, h)
add entry (h,w(h2)) to Li(t) (incoming label of t) with w(h2) = d(h, t)

Distance (2-hop-cover) Labeling is

L = {{Lo(v)}v∈V , {Li(v)}v∈V }

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 19 / 48

Query algorithm for 2-hop-cover distance labeling

Q(s, t, L) =

{
min
v∈V

{δsv + δvt | (v, δsv) ∈ Lo(s) ∧ (v, δvt) ∈ Li(t)} if Lo(s) ∩ Li(t) 6= ∅

∞ otherwise

Lo(s) ∩ Li(t) 6= ∅ denotes the two label sets share a common hub vertex
If labels sorted by vertex, query algo takes

O(max
s,t∈V , s 6=t

{max{|Li(s)|, |Lo(t)|}})

Θ(n) with naive 2-hop-cover computation, on top of O(n2) extra space
More compact hop sets/labels necessary for practical usage

Threats to Scalability
large label sets: worst case O(n) per vertex
unsustainable space requirements: worst case O(n2)

impractical query times: worst case O(n)

infeasible preprocessing: worst case O(n3)

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 20 / 48

Scalable 2-hop-cover Distance Labelings

(Negative) Facts
NP-Hard to compute minimum-sized 2-hop-cover hop set (from min
set cover)
NP-Hard to find a corresponding minimum-sized distance labeling
Ω(n4/3) Lower bound on the size of any labeling scheme (sum of sizes
of all label sets)
A O(log n)–factor approximation algorithm running in O(mn2 log(n2

m))
time is known (again useless at large scale)

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 21 / 48

Scalable 2-hop-cover Distance Labelings

(Positive) Facts
Akiba et al. – Fast exact shortest-path distance queries on large net-
works by pruned landmark labeling. SIGMOD 2013: 349-360
Simple poly-time heuristic for preprocessing (pll) that computes min-
imal labelings (ML)

Any labeling such that any removal of any label entry breaks cover prop-
erty
Certain types of ML (well-ordered ones) perform very well in practice

Variant of pll, named rxl, given in [Delling+ ESA 2014]

Ingredients of pll/rxl
Vertex ordering (according to some "importance criterion")
Shortest path (Dijkstra’s like) visits
Pruning mechanism

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 22 / 48

1. Fix a vertex ordering {v1, v2, . . . , vn}
2. Perform 2n (n forward, n backward) Dijkstra’s-like visits, each rooted
at a vertex vi ∈ V

3. Incrementally enrich labeling L as follows:
Lk−1 status of labeling after execution of SP visits rooted at vk−1

Initially Li(v)0 = Lo(v)0 = ∅
3.1 During visit rooted at vk on G (or GT) if vertex u settled with distance δ
3.2 Check whether Q(vk, u, L

k−1) ≤ δ (or Q(u, vk, L
k−1) ≤ δ)

3.3 IF YES =⇒ visit is pruned at u
3.4 IF NO =⇒ add (vk, δ) to Li(u) (or Lo(u)) and continue

Pruning step: means Lk−1 already covers pair (vk, u) (or (u, vk))
Holds for all pairs (vk, x) (or (x, vk)) such that a shortest path from
vk to x (for rom x to vk) passes through u

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 23 / 48

Pruned Landmark Labeling
Preprocessing

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 24 / 48

Pruned Landmark Labeling
Preprocessing

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 25 / 48

vertex Lo(·) Li(·)
0 {(4, 1), (0, 0)} {(4, 1), (0, 0)}
1 {(4, 2), (0, 1), (3, 2), (1, 0)} {(4, 2), (0, 1), (3, 2), (1, 0)}
2 {(4, 2), (0, 2), (3, 1), (1, 1), (2, 0)} {(4, 2), (0, 2), (3, 1), (1, 1), (2, 0)}
3 {(4, 1), (3, 0)} {(4, 1), (3, 0)}
4 {(4, 0)} {(4, 0)}
5 {(4, 1), (5, 0)} {(4, 1), (5, 0)}
6 {(4, 2), (5, 1), (6, 0)} {(4, 2), (5, 1), (6, 0)}

Sample graph and a corresponding 2-hop-cover distance label-
ing w/ vertex ordering {4, 0, 3, 1, 2, 5, 6}

Well ordered property (nice property to exploit)

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 26 / 48

Performance

Easy to see labeling size, preprocessing time and query time de-
pend on chosen ordering (correctness does not)
Worst cases (again):

preprocessing time n×O(Dijkstra’s) i.e. O(n3)
extra space O(n2)
query time O(n)

Clearly NP-Hard to find an ordering yielding optimum

Very good experimental behavior when ordering found via
fast-to-compute centrality measures

degree, approx betweenness, number of covered pairs (greedy)
Good behaviormeans, even on billion-vertex networks:

Preprocessing ≈ hours
Space occupancy ≈ tens of GBs
Query time ≈milliseconds

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 27 / 48

TODO:
Evaluate RXL on weighted (sparse) digraphs
Evaluate CRXL: compressed version compromising on query
time to save space
Evaluate approximation algo

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 28 / 48

Limits of Preprocessing in Modern Networks

"Problem": real-world networks are time-evolving (aka dynamic)
Topology and arc weights likely to change over time

Examples:
Social Networks: new friends, removed friends/pages
Web graphs: new pages/links, broken links, removed pages
Blogging: new replies/posts, removed users/posts/replies
Collaboration networks: new/withdrawn papers
Infrastructures: disruptions, new roads, cancelled flights
Graph Databases: updated/outdated entries

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 29 / 48

Limits of Preprocessing
All preprocessing-based techniques suffer of the following issues:

Precomputed data can become outdated/incorrect due to updates
to the graph
Precomputed data require time-consuming preprocessing
Re-processing after any update: impractical in terms of time over-
head
Enriching data structure to tolerate updates to graph: infeasible due
to huge space overheads

For 2-hop-cover labelings:
Label entries can become outdated (i.e. hop contain obsolete dis-
tances)
Large number even in presence of a single arc update
Even a single update can lead to large number of incorrect answers
to queries

q1(s1, t1), q2(s2, t2), . . . queries depends on status of graph Gi

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 30 / 48

Limits of Preprocessing
Effective dynamic algorithms are necessary

Algorithms able to update only the part of the data structure that is
compromised by the change
Effective typically means faster (enough) wrt scratch recomputation

2
2.5
3

3.5
4

4.5
5

1 2 3 4 5 6 7 8 9 10

M
ax
im
um

St
re
tc
h
Fa
ct
or

Number of Edge Removals

0
2000
4000
6000
8000
10000
12000
14000

1 2 3 4 5 6 7 8 9 10D
isc
on

ne
ct
io
ns

Number of Edge Removals

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 31 / 48

Limits of Preprocessing

Dynamic algorithm: updates existing labeling when graph under-
goes changes

Exploit current data structure to identify compromised entries
In this specific case: we want cover property to remain true
after each update

G0 → G1 → . . . → Gk−1 → Gk

↓ ↓ . . . ↓ ↓
L0 → L1 → . . . → Lk−1 → Lk

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 32 / 48

Outline

1 Mining Distances: Problem

2 Mining Distances vs Modern Applications

3 Scalable Mining of Distances

4 2-hop-cover

5 2-hop-cover and Time-Evolving Graphs

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 33 / 48

2-hop-cover and Time-Evolving Graphs

Dynamic problem, two flavors:
Incremental: vertex/arc insertions, arc weight decreases

Usually easier to handle
Decremental: vertex/arc deletions, arc weight increases

Typically more computationally challenging

Dynamic Algorithms for 2-hop-cover Labelings
Incremental algorithm [Akiba+, WWW 2014]
Decremental algorithm(s) [D’Angelo, D’Emidio, Frigioni, ACM
JEA 2019] [D’Emidio, MDPI Algorithms 2020]

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 34 / 48

Incremental Algorithm (resume–2hc)
[Akiba+ WWW 2014]

Input: Arc (x, y) undergoes incremental update
1 foreach vi ∈ L(u) ∪ L(v) do
2 Resume BFS/Dijkstra’s rooted at vi from vertices x and y;
3 Add new pairs if pruning test passed;

Main Features:
Lazy algorithm: outdated entries not removed
resume–2hc only adds shorter distances induced by incremental up-
dates

Removing non-shortest-path distances is computationally expensive
Correctness holds since query algo searches for minimum
Labeling size inevitably grows with number of updates
=⇒ Minimality not preserved

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 35 / 48

Incremental Algorithm (resume–2hc)
[Akiba+ WWW 2014]

Worst case running time: O(n× Dijkstra’s)

In practice
Very effective, on all tested inputs
Milliseconds for updating extremely large labelings
Whereas pll takes hours of repreprocessing

Open problem: design algorithm that does not break minimality
Periodical reprocessing necessary if labeling size "grows too
much" (performance degrades over time)

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 36 / 48

Example of resume–2hc execution

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 37 / 48

Decremental Algorithm(s)
[D’Angelo, D’Emidio, Frigioni, ACM JEA 2019][D’Emidio, MDPI Algorithm 2020]

Decremental operationsmore difficult to handle: outdated entries must
be removed

otherwise correctness not guaranteed

Decremental Algo #1 (bidir–2hc) – [D’Angelo, D’Emidio, Frigioni,
ACM JEA 2019]

Three phases
1. Identification of affected vertices (potentially containing outdated
entries)

use induced paths
2. Removal of outdated (w/ binary search)
3. Restore of cover property by suited SP visits (in order) rooted at each
affected vertex

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 38 / 48

Identification: red/green vs gray vertices
connected by s-paths containing/not containing modified arc

(can be checked via content of label sets)

x1x4

x5

x2x6

x7 x3

x y

y1

y2

y3

j

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 39 / 48

Removal of green entries from red outgoing labels
and red entries from green incoming labels

(linear scan)

x1x4

x5

x2x6

x7 x3

x y

y1

y2

y3

j

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 39 / 48

Restore one forward visit (of G) per red vertex
one backward visit (of GT) per green vertex

(to re–cover pairs)

x1x4

x5

x2x6

x7 x3

x y

y1

y2

y3

j

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 39 / 48

Worst case running time: O(nm log n + n3)

Looks bad but in practice rather effective in all instances
At most, on average, tens of seconds for updating extremely large
labelings
Where pll takes hours for repreprocessing

Problem: slow on some sparse, weighted digraphs
Not so rare cases slower than from scratch (even if better on
average)

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 40 / 48

Reason: less effective pruningmechanism
Leads to unnecessary exploration of parts of the graph
Large fractions execution time spent on this step (profiling)

Less effective pruning
Visits traverse non–affected vertices
Pruning can stop visit only for pairs of affected vertices
Visit from x to y cannot stop j (although x and j are covered)

x1x4

x5

x2x6

x7 x3

x y

y1

y2

y3

j

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 41 / 48

Decremental Algo #2 (queue–2hc) – [D’Emidio, Algorithms 2019]

Main differences:
Identificationand removal combined in single step (use induced trees)
Restoring does not traverse unchanged vertices
Exploits label entries of unchanged vertices to avoid unnecessary ex-
plorations (such entries encode shortest paths in new graph)
Can be used to re–cover pairs
Evaluates them via priority queue, in order

ryx

x1

x2

x3

x4

x5

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 42 / 48

Some Experimentation

Dataset Network Type |V| |E| avg deg S D W
Caida (cai) Ethernet 3.20e+04 4.01e+04 2.51
Luxembourg (lux) Road 3.06e+04 7.55e+04 4.11
wgtGnutella (gnu) Peer2Peer 6.26e+04 1.48e+05 4.73
Brightkite (bkt) Location-based 5.82e+04 2.14e+05 7.35
Efz (Efz) Railway 1.25e+05 4.02e+05 6.43
Eu-All (eua) email 2.65e+05 4.19e+05 2.77
Epinions (epn) Social 1.32e+05 8.41e+05 12.76
Barabási-A. (baa) Synthetic (Power-Law) 6.32e+05 1.00e+06 3.17
web-NotreDame (ntr) HyperLinks 3.26e+05 1.09e+06 6.69
Netherlands (nld) Road 8.92e+05 2.28e+06 5.11
YouTube (ytb) Social 1.13e+06 2.99e+06 5.26
WikiTalk (wtk) Communication 2.39e+06 5.02e+06 4.19
Human-Genome (bio) Biological 1.43e+04 9.03e+06 1262.94
AS-Skitter (ski) Computer 1.70e+06 1.11e+07 13.08
DBPedia (dbp) Knowledge 3.97e+06 1.29e+07 6.97
Erdős-Rényi (erd) Synthetic (Uniform) 1.00e+04 2.50e+07 2499.11

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 43 / 48

Some Experimentation

bri epn eua

10−3

10−1

101

t
im

e
(s

)

queue–2hc fs-2hc bidir–2hc

wtk nld ytb

10−3

10−1

101

103

t
im

e
(s

)

queue–2hc fs-2hc bidir–2hc

gnu efz ntr

10−3

10−1

101

103

t
im

e
(s

)

queue–2hc fs-2hc bidir–2hc

bar erd dbp

10−3

10−1

101

103

t
im

e
(s

)

queue–2hc fs-2hc bidir–2hc

Running times of pll, bidir–2hc and queue–2hc on some inputsMattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 44 / 48

Open (On-Going) Work
Minimality preserving incremental algorithm
Improve further decremental algorithm, or find some lower bound
Refine theoretical analysis (output bounded sense?)

Theoretical foundations to explain inaccuracy of worst case
Batch algorithms
Attack other big time-evolving graphminingproblems via similar tech-
niques (or adapt dynamicalgo to relevant special cases – e.g. timetable
queries)
Distributed preprocessing/dynamic algorithms
Strengthen experimental results

More inputs
Better evaluation of RXL/CRXL (adaptation of dyn algo?)
Evaluation of apx algo

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 45 / 48

NetworKit: key features in this context
Graphs

Easy, effective graph manipulation/processing tools
All basic graph algorithms, also easily customizable
Support for graph update operations

Network Analysis
Performance-critical algorithms implemented in C++/OpenMP
Centrality Measures (degree distrib. in O(n), easily parallelizable)
Implementation of very recently introduced algorithms: parallel im-
plementations of two approx algorithms for Betweenness centrality

Graph Generators/Input Interfaces
Erdös-Renyi Model, Barabasi-Albert models for random graphs
Readers for datasets from known repositories (SNAP, Konect)

Integration with Python for data analysis and interoperability
pandas, numpy, scipy, networkx

For educational purposes (courses: big data processing, algorithm
engineering)

interactive workflow and seamless Python integration
Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 46 / 48

(Some) Publications supported by NetworKit

M. D’Emidio, I. Khan, D. Frigioni: Journey Planning Algorithms for Massive
Delay-Prone Transit Networks. Algorithms 13(1): 2 (2020)
M. D’Emidio: Faster Algorithms for Mining Shortest-Path Distances from
Massive Time-Evolving Graphs. Algorithms 13(8): 191 (2020)
G. D’Angelo, M. D’Emidio, D. Frigioni: Fully Dynamic 2-Hop Cover Label-
ing. ACM J. Exp. Algorithmics 24(1): 1.6:1-1.6:36 (2019)
M. D’Emidio, I. Khan: Dynamic Public Transit Labeling. ICCSA (1) 2019:
103-117

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 47 / 48

Thanks for your attention

Q&A

mattia.demidio@{univaq,gssi}.it
www.mattiademidio.com

Mattia D’Emidio On Mining Distances out of Massive Time-Evolving Graphs 48 / 48

	Mining Distances: Problem
	Mining Distances vs Modern Applications
	Scalable Mining of Distances
	2-hop-cover
	2-hop-cover and Time-Evolving Graphs

