



Applications, Algorithms, Experiments, Open Problems

Mattia D'Emidio<sup>1</sup>

# NetworKit

Large-Scale Network Analysis – Interactive and Fast!

<sup>1</sup>Assistant Professor @ UNIVERSITY OF L'AQUILA Lecturer/Scientific Collaborator @ GRAN SASSO SCIENCE INSTITUTE email: mattia.demidio@{univaq,gssi}.it web: www.mattiademidio.com

### NetworKit Day 2020

October 15, 2020



Mattia D'Emidio

On Mining Distances out of Massive Time-Evolving Graphs



- Mining Distances: Problem
- 2 Mining Distances vs Modern Applications
- **3** Scalable Mining of Distances
- 4 2-HOP-COVER
- 6 2-нор-cover and Time-Evolving Graphs



### Outline



- Mining Distances: Problem
- 2 Mining Distances vs Modern Applications
- 8 Scalable Mining of Distances
- 4 2-HOP-COVER
- 6 2-HOP-COVER and Time-Evolving Graphs



# **Mining Distances: Problem**



### MINING DISTANCES FROM (DI)GRAPHS

- Given (DI)GRAPH G = (V, A)
- Given sequence of (DISTANCE) QUERIES  $\{q(s_1,t_1),q(s_2,t_2),\ldots\}$  for pairs of vertices  $s_i,t_i\in V$
- Report **DISTANCE**  $d(s_i, t_i)$  as fast as possible
  - d( $s_i, t_i$ ): distance = weight of a shortest path from  $s_i$  to  $t_i$  in G

#### **RELATED VARIANTS**

- **REACHABILITY QUERIES:** report **yes** if there exist a path from  $s_i$  and  $t_i$  in G, **no** otherwise
- PATH-REPORTING QUERIES: report whole shortest path (sequence of vertices/arcs) if any, empty set otherwise



#### ONE OF MOST STUDIED PROBLEMS in Computer Science/Engineering

#### Several highly impacting applications in real-world

- *Routing* in communication networks
- Route/Journey planning road/transport networks
- Context Aware Search, web indexing
- Data mining for linked data, Graph Databases
- Social Networks analysis, Social Engineering
- Bioinformatics, Top-k Nearest Keyword Search

#### HUGE AMOUNT OF RESEARCH/LITERATURE

Algorithms, data structures, bounds and complexity results

#### **TEXTBOOK/STANDARD SOLUTION**

- Solve SSSP (upon query), e.g. Dijkstra's algorithm
- **Cost PER QUERY:** (for an *n*-vertex, *m*-arc graph)
  - $\square \mathcal{O}(m + n \log n)$  time,  $\mathcal{O}(n)$  space
- **BEST KNOWN METHOD** for generally positively weighted digraphs



Problem: **SCALABILITY ISSUES** against "modern inputs"



### Outline



### Mining Distances: Problem

2 Mining Distances vs Modern Applications

8 Scalable Mining of Distances

4 2-HOP-COVER

**5** 2-HOP-COVER and Time-Evolving Graphs



Mattia D'Emidio

On Mining Distances out of Massive Time-Evolving Graphs

# **Mining Distances vs Modern Applications**

### **BIG GRAPHS, BIG PROBLEMS**

- Polynomial/linear not good enough
- $\mathcal{O}(m + n \log n)$  query algorithm leads to (tens of) seconds per query when graphs are MASSIVE IN SIZE ( $\geq 10^5$  vertices/arcs)
- **UNSUSTAINABLE TIME OVERHEAD**, especially for interactive applications executing **thousands/millions queries a day**

### GRAPHS EMERGING FROM MODERN APPLICATIONS are indeed MASSIVE

### BILLIONS OF VERTICES/ARCS

- e.g. Twitter, Facebook, Google Maps, WWW, Internet
- Moreover they are "COMPLEX"
- No topological features to exploit for accelerating queries
  - e.g. regularity, planarity, power-law degree distributions (committion networks, Internet, Web)



# Mining Distances vs Modern Applications

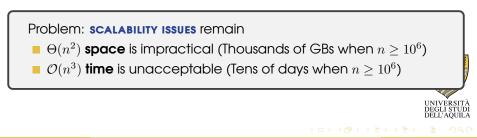


### ALTERNATIVE TO STANDARD: USE OF PREPROCESSING

- Quite well established strategy to handle large inputs
  - 1. SOLVE APSP once, e.g. Floyd-Warshall algorithm or repeated Dijkstra's
  - 2. STORE outputs in a DISTANCE MATRIX
  - 3. RETRIEVE distances upon query by accessing right DM location
- Cost per query:  $\mathcal{O}(1)$  time/space to access (optimal)

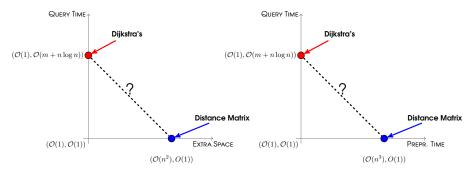
### PREPROCESSING COSTS

- $\mathcal{O}(nm + n^2 \log n) \in \mathcal{O}(n^3)$  time
- $\blacksquare n \times n = \Theta(n^2)$  extra space



# Query Time vs Extra Space and Prepr. Time







### Outline



- Mining Distances: Problem
- 2 Mining Distances vs Modern Applications
- **3** Scalable Mining of Distances
- 4 2-HOP-COVER
- 6 2-HOP-COVER and Time-Evolving Graphs



# **Scalable Mining of Distances**



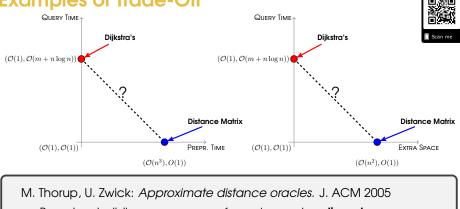
VERY ACTIVE RESEARCH FIELD: various techniques to find trade-offs

- 1. APPROXIMATION
- 2. Sampling
- 3. PARALLELISM
- 4. Restriction to special classes of graphs

**SOME LITERATURE** (non-exhaustive list):

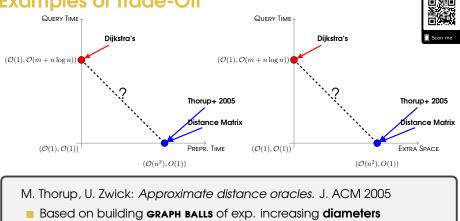
- [Potamias+ CIKM 2009][Elkin+ SODA 2015]
- [Thorup+ JACM 2015][Alstrup+, SODA 2016]
- [Cohen+, SODA 2002, SIAM J. Comp. 2003]
- [Thorup+ JACM 2005][Sarma+ WSDM 2010]
- [Abraham+ ESA 2012][Akiba+ SIGMOD 2013][Delling+ ESA 2014]





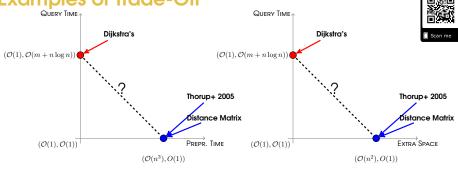
- Based on building GRAPH BALLS of exp. increasing diameters
- PREPROCESSING in  $\mathcal{O}(kmn^{\frac{1}{k}})$  expected time
- **EXTRA SPACE**  $\mathcal{O}(kn^{1+\frac{1}{k}})$  QUERY in  $\mathcal{O}(k)$  time for any  $k \ge 1$
- Distances have **STRETCH**  $\leq 2k 1$  (i.e. approximated for k > 1)

Equivalent to distance matrix for exact distances k = 1



- **PREPROCESSING** in  $\mathcal{O}(kmn^{\frac{1}{k}})$  expected time
- **EXTRA SPACE**  $\mathcal{O}(kn^{1+\frac{1}{k}})$  **QUERY** in  $\mathcal{O}(k)$  time for any  $k \ge 1$
- Distances have **stretch**  $\leq 2k 1$  (i.e. approximated for k > 1)

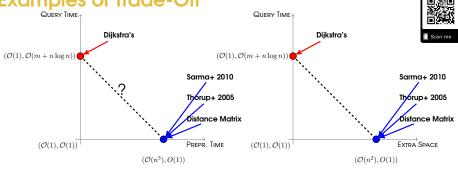
**EQUIVALENT TO DISTANCE MATRIX** for **exact distances** k = 1



A. D. Sarma, S Gollapudi, M. Najork, R. Panigrahy: A sketch-based distance oracle for web-scale graphs. WSDM 2010: 401-410

- Simplification of method of Thorup and Zwick via **SEED NODES**
- Same theoretical guarantees on **preprocessing** and **space**
- Query in  $\widetilde{\mathcal{O}}(n^{\frac{1}{c}})$  time for any  $c \geq 1$ , stretch 2c-1

Better behavior experimentally, again Equivalent to distance MATRIX for c=1

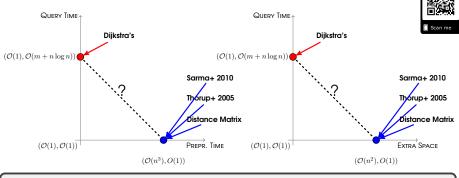


A. D. Sarma, S Gollapudi, M. Najork, R. Panigrahy: A sketch-based distance oracle for web-scale graphs. WSDM 2010: 401-410

- Simplification of method of Thorup and Zwick via **SEED NODES**
- Same theoretical guarantees on **preprocessing** and **space**
- QUERY in  $\widetilde{\mathcal{O}}(n^{\frac{1}{c}})$  time for any  $c\geq 1$  , stretch 2c-1

Better behavior experimentally, again Equivalent to distance MATRIX for c=1

# A Notable Trade-Off

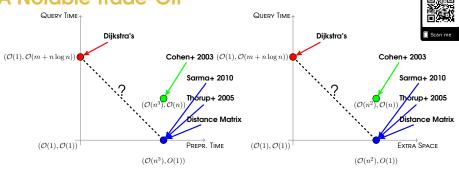


E. Cohen, E. Halperin, H. Kaplan, U. Zwick: *Reachability and Distance Queries via 2-Hop Labels.* SIAM J. Comput. 32(5): 1338-1355 (2003)

- Based on the notion of **2-HOP-COVER** ("compact" representation of transitive closure)
- Several works followed on the same ideas [Abraham+ ESA 2012] [Akiba+ EDBT 2012, SIGMOD 2013] [Delling+ ESA 2014]

DELL'AQUILA

# A Notable Trade-Off



E. Cohen, E. Halperin, H. Kaplan, U. Zwick: *Reachability and Distance Queries via 2-Hop Labels.* SIAM J. Comput. 32(5): 1338-1355 (2003)

- Based on the notion of **2-HOP-COVER** ("compact" representation of transitive closure)
- Several works followed on the same ideas [Abraham+ ESA 2012] [Akiba+ EDBT 2012, SIGMOD 2013] [Delling+ ESA 2014]

Worse worst-case but EFFECTIVE IN PRACTICE WITH SUITED HEURISTICS



On the importance of experimentation and tools for (massive) graph processing

- Most RESULTS on shortest-path/distance queries in complex networks are of experimental nature
- For GENERAL GRAPHS no known exact approach PROVABLY BETTER than Dijkstra's and APSP+Distance Matrix in terms of the three criteria (query time, extra space, preprocessing time)
- **EXPERIMENTAL EFFORTS** to determine best solutions
- OF PARAMOUNT IMPORTANCE having EFFECTIVE, EASY TO USE TOOLKITS for
  - manipulation, generation, analysis of large-scale complex networks
  - efficient implementation of graph algorithms
  - many thanks to NETWORKIT COMMUNITY for their effort (more details later)

### Outline



- Mining Distances: Problem
- 2 Mining Distances vs Modern Applications
- 8 Scalable Mining of Distances
- 4 2-HOP-COVER
- 6 2-HOP-COVER and Time-Evolving Graphs



### 2-HOP-COVER

Given directed weighted graphs  $G = (V, A, w)^{-1}$ 

 $\blacksquare$  n = |V| vertices, m = |E| arcs, weight func.  $w : A \to \mathbb{R}^+$ 

- Let  $P_{uv}$  be collection of shortest paths for pair  $u,v\in V$  in G
- Let  $P = \bigcup_{u,v \in V} P_{uv}$  be collection of all shortest paths of G

Hop: a triple (h, u, v) where h is a (simple) **path** and u, v are **endpoints** of such path

A SET OF HOPS H is a 2-hop-cover of G if and only if:

- For any  $s, t \in V$  such that  $P_{st} \neq \emptyset$  (pair of connected vertices)
- There exists a (SHORTEST) PATH  $p \in P_{st}$  and two HOPS  $(h_1, s, h), (h_2, h, t) \in H$  such that

$$p = h_1 \oplus_h h_2$$

**i.e.** p can be reconstructed as **concatenation at hub vertex** h



<sup>1</sup>Special cases easy to derive

Mattia D'Emidio





### 2-HOP-COVER

### IN OTHER WORDS



- A 2-нор-соver hop set H allows to **Reconstruct** (the weight of) one shortest path by **concatenating two (shortest) paths** emanating from s and t at a suited нив vertex
- H is said to COVER G (or to satisfy COVER PROPERTY)
- |H| is the **SIZE** of the 2-HOP-COVER

### NAIVE BUILDING OF a 2-HOP-COVER

- 1. Start with  $H = \emptyset$
- 2. Solve APSP once
- 3. For any found shortest path p from s to t
  - $\blacksquare H = H \cup \{(\emptyset, s, s), (p, s, t)\}$
  - Or  $H = H \cup \{(h_1, s, h), (h_2, h, t)\}$  Where  $h_1$  and  $h_2$  are any two disjoint subpaths of p emanating from a common vertex h
- **Result:** *H* has size  $\mathcal{O}(n^2)$  (# triples)

Moreover **RETRIEVAL** of shortest paths from H requires **SEARCHING** ( $\mathcal{G}_{\mathcal{H}}$ 



### 2-HOP-COVER

### MORE EFFICIENT RETRIEVAL



- **CONVERT** into 2-HOP-COVER **distance labeling** data structure
- Well known from distributed computing
- STORES data at each vertex in label form
- ALLOWS retrieval of distances/paths by accessing only labels of involved vertices

Populating 2-HOP-COVER DISTANCE LABELING from 2-HOP-COVER hop set H:

For any 
$$(h_1, s, h), (h_2, h, t) \in H$$

ADD entry  $(h, w(h_1))$  to  $L_o(s)$  (outgoing label of s) with  $w(h_1) = d(s, h)$ 

ADD entry  $(h, w(h_2))$  to  $L_i(t)$  (incoming label of t) with  $w(h_2) = d(h, t)$ 

DISTANCE (2-HOP-COVER) LABELING is

$$L = \{\{L_o(v)\}_{v \in V}, \{L_i(v)\}_{v \in V}\}$$



QUERY ALGORITHM for 2-HOP-COVER distance labeling

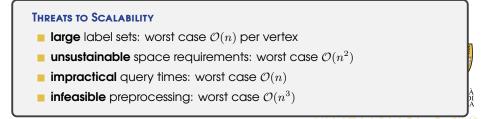
$$\mathsf{Q}(s,t,L) = \begin{cases} \min_{v \in V} \{\delta_{sv} + \delta_{vt} \mid (v, \delta_{sv}) \in L_o(s) \land (v, \delta_{vt}) \in L_i(t) \} & \text{if } L_o(s) \cap L_i(t) \neq \emptyset \\ \infty & \text{otherwise} \end{cases}$$

L<sub>o</sub>(s)  $\cap$  L<sub>i</sub>(t)  $\neq \emptyset$  denotes the two label sets share a **common hub vertex** If **labels sorted by vertex**, query algo takes

 $\mathcal{O}(\max_{s,t\in V, s\neq t} \{\max\{|L_i(s)|, |L_o(t)|\}\})$ 

 $\Theta(n)$  with **NAIVE 2-HOP-COVER** computation, on top of  $\mathcal{O}(n^2)$  extra space

More compact hop sets/LABELS necessary for practical usage



# Scalable 2-HOP-COVER Distance Labelings



### (NEGATIVE) FACTS

- NP-Hard to compute minimum-sized 2-нор-соvеr hop set (from min set cover)
- NP-HARD to find a corresponding minimum-sized distance labeling
- $\ \ \, \Omega(n^{4/3})$  Lower bound on the size of any labeling scheme (sum of sizes of all label sets)
- A  $\mathcal{O}(\log n)$ -factor APPROXIMATION ALGORITHM running in  $\mathcal{O}(mn^2 \log(\frac{n^2}{m}))$  time is known (again useless at large scale)



# Scalable 2-HOP-COVER Distance Labelings

### (POSITIVE) FACTS



- Akiba et al. Fast exact shortest-path distance queries on large networks by pruned landmark labeling. SIGMOD 2013: 349-360
- Simple POLY-TIME HEURISTIC FOR PREPROCESSING (PLL) that computes MIN-IMAL LABELINGS (ML)
  - Any labeling such that any removal of any label entry breaks COVER PROP-ERTY
  - Certain types of ML (well-ordered ones) perform very well in practice
- Variant of PLL, named RXL, given in [Delling+ ESA 2014]

INGREDIENTS OF PLL/RXL

VERTEX ORDERING (according to some "importance criterion")

SHORTEST PATH (Dijkstra's like) visits

PRUNING mechanism

]. Fix a vertex ordering  $\{v_1, v_2, \ldots, v_n\}$ 



- 2. **PERFORM** 2n (*n* forward, *n* backward) Dijkstra's-like visits, each rooted at a vertex  $v_i \in V$
- 3. INCREMENTALLY ENRICH LABELING L as follows:
  - $L^{k-1}$  status of labeling after execution of SP visits rooted at  $v_{k-1}$

Initially 
$$L_i(v)^0 = L_o(v)^0 = \emptyset$$

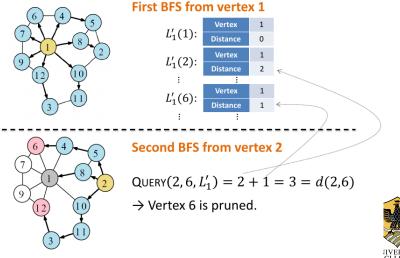
- 3.1 During visit rooted at  $v_k$  on G (or  $G^T$ ) if vertex u settled with distance  $\delta$
- 3.2 CHECK whether  $Q(v_k, u, L^{k-1}) \leq \delta$  (or  $Q(u, v_k, L^{k-1}) \leq \delta$ )
- 3.3 IF YES  $\implies$  visit is **PRUNED** at u
- 3.4 IF NO  $\implies$  ADD  $(v_k, \delta)$  to  $L_i(u)$  (or  $L_o(u)$ ) and CONTINUE

**PRUNING STEP:** means  $L^{k-1}$  already covers pair  $(v_k, u)$  (or  $(u, v_k)$ ) **Holds** for all pairs  $(v_k, x)$  (or  $(x, v_k)$ ) such that a shortest path from  $v_k$  to x (for rom x to  $v_k$ ) passes through u

# Pruned Landmark Labeling

#### Preprocessing

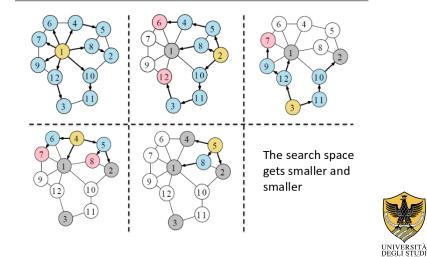




### **Pruned Landmark Labeling**

Preprocessing





25 / 48

DELL'AOUILA



| 1 | - |
|---|---|
|   | 5 |
|   | 6 |
|   |   |

| VERTEX | $L_o(\cdot)$                        | $ L_i(\cdot) $                      |
|--------|-------------------------------------|-------------------------------------|
| 0      | $\{(4,1),(0,0)\}$                   | $\{(4,1),(0,0)\}$                   |
| 1      | $\{(4,2),(0,1),(3,2),(1,0)\}$       | $\{(4,2),(0,1),(3,2),(1,0)\}$       |
| 2      | $\{(4,2),(0,2),(3,1),(1,1),(2,0)\}$ | $\{(4,2),(0,2),(3,1),(1,1),(2,0)\}$ |
| 3      | $\{(4,1),(3,0)\}$                   | $\{(4,1),(3,0)\}$                   |
| 4      | $\{(4,0)\}$                         | $\{(4,0)\}$                         |
| 5      | $\{(4,1),(5,0)\}$                   | $\{(4,1),(5,0)\}$                   |
| 6      | $\{(4,2),(5,1),(6,0)\}$             | $\{(4,2),(5,1),(6,0)\}$             |

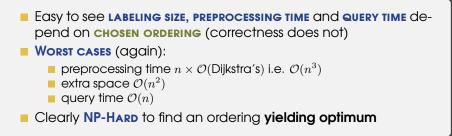
Sample graph and a corresponding 2-HOP-COVER distance labeling w/ vertex ordering  $\{4,0,3,1,2,5,6\}$ 

WELL ORDERED property (nice property to exploit)

DELL'AQUILA

### Performance





# VERY GOOD EXPERIMENTAL BEHAVIOR when ordering found via fast-to-compute centrality measures

degree, approx betweenness, number of covered pairs (greedy)

GOOD BEHAVIOR means, even on billion-vertex networks:

- **Preprocessing**  $\approx$  hours
- **Space occupancy**  $\approx$  tens of GBs
- **QUERY TIME**  $\approx$  milliseconds



|              | label s            | pre  | preprocessing [s] |      | 5     | space [MiB] |       |      | query [µs] |        |                  |      |      |       |
|--------------|--------------------|------|-------------------|------|-------|-------------|-------|------|------------|--------|------------------|------|------|-------|
| instance     | PLL                | RXL  | PLL               | Tree | RXL   | CRXL        | PLL   | Tree | RXL        | CRXL   | $\overline{PLL}$ | Tree | RXL  | CRXL  |
| Gnutella*    | $644 \times 16$    | 791  | 54                | 209  | 307   | 451         | 209   | 68   | 95.7       | 49.1   | 5.2              | 19.0 | 7.1  | 45.9  |
| Epinions*    | $33 \times 16$     | 118  | 2                 | 128  | 31    | 39          | 32    | 42   | 19.1       | 7.7    | 0.5              | 11.0 | 1.1  | 4.1   |
| $Slashdot^*$ | $68 \times 16$     | 219  | 6                 | 343  | 85    | 110         | 48    | 83   | 37.4       | 17.8   | 0.8              | 12.0 | 1.7  | 8.0   |
| NotreDame*   | $34 \times 16$     | 25   | 5                 | 243  | 18    | 22          | 138   | 120  | 22.9       | 11.9   | 0.5              | 39.0 | 0.2  | 1.0   |
| $WikiTalk^*$ | $34 \times 16$     | 113  | 61                | 2459 | 1076  | 1278        | 1000  | 416  | 560.8      | 86.5   | 0.6              | 1.8  | 1.0  | 3.4   |
| Skitter      | $123 \times 64$    | 273  | 359               | _    | 2862  | 3511        | 2700  | _    | 1074.6     | 316.7  | 2.3              | _    | 2.3  | 20.6  |
| Indo*        | $133 \times 64$    | 43   | 173               | _    | 173   | 201         | 2300  | -    | 158.6      | 90.2   | 1.6              | -    | 0.5  | 1.8   |
| MetroSec     | $19 \times 64$     | 116  | 108               | _    | 2300  | 2573        | 2500  | _    | 592.8      | 207.7  | 0.7              | _    | 0.8  | 3.6   |
| Flickr*      | $247 \times 64$    | 360  | 866               | _    | 5888  | 7110        | 4000  | _    | 1794.6     | 345.9  | 2.6              | _    | 2.8  | 19.9  |
| Hollywood    | $2098\!\times\!64$ | 2114 | 15164             | _    | 61736 | 75539       | 12000 | _    | 5934.3     | 2050.0 | 15.6             | _    | 13.9 | 204.0 |
| Indochina*   | $415 \times 64$    | 91   | 6068              | _    | 8390  | 8973        | 22000 | _    | 1978.8     | 876.8  | 4.1              | _    | 0.9  | 3.9   |

#### TODO:

- Evaluate RXL on weighted (sparse) digraphs
- Evaluate CRXL: compressed version compromising on query time to save space
- Evaluate APPROXIMATION ALGO

UNIVERSITÀ DEGLI STUDI

# Limits of Preprocessing in Modern Networks



"Problem": REAL-WORLD NETWORKS ARE TIME-EVOLVING (aka dynamic)
 Topology and arc weights likely to change over time

#### **EXAMPLES:**

- Social Networks: new friends, removed friends/pages
- **WEB GRAPHS:** new pages/links, broken links, removed pages
- **BLOGGING:** new replies/posts, removed users/posts/replies
- COLLABORATION NETWORKS: new/withdrawn papers
- INFRASTRUCTURES: disruptions, new roads, cancelled flights
- GRAPH DATABASES: updated/outdated entries



# **Limits of Preprocessing**

ALL PREPROCESSING-BASED TECHNIQUES suffer of the following issues:



- PRECOMPUTED DATA can become outDated/INCORRECT due to updates to the graph
- **PRECOMPUTED DATA** require time-consuming preprocessing
- RE-PROCESSING after any update: impractical in terms of time overhead
- **ENRICHING** data structure to tolerate updates to graph: infeasible due to huge space overheads

### FOR 2-HOP-COVER LABELINGS:

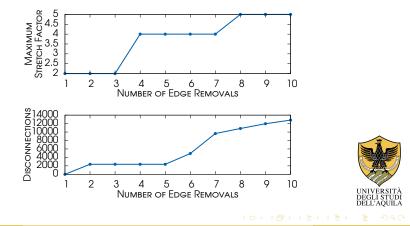
- Label entries can become **outdated** (i.e. hop contain obsolete distances)
- Large number even in presence of A SINGLE ARC UPDATE
- Even a single update can lead to LARGE NUMBER OF INCORRECT AND TO QUERIES
  - $\blacksquare$   $q_1(s_1, t_1), q_2(s_2, t_2), \ldots$  queries depends on status of graph  $G_i$



# **Limits of Preprocessing**

EFFECTIVE DYNAMIC ALGORITHMS are necessary

- Algorithms able to update only the part of the data structure that is compromised by the change
- **EFFECTIVE** typically means faster (enough) wrt scratch recomputation





# **Limits of Preprocessing**



**DYNAMIC ALGORITHM:** updates existing labeling when **GRAPH UNDER-GOES CHANGES** 

- Exploit current data structure to identify compromised entries
- In this specific case: we want **COVER PROPERTY** to remain true after each update



### Outline



- Mining Distances: Problem
- 2 Mining Distances vs Modern Applications
- 8 Scalable Mining of Distances
- 4 2-HOP-COVER
- **б** 2-нор-соver and Time-Evolving Graphs



### 2-нор-cover and Time-Evolving Graphs



DYNAMIC PROBLEM, two flavors:

- **INCREMENTAL:** vertex/arc insertions, arc weight decreases
  - Usually EASIER TO HANDLE
- **DECREMENTAL:** vertex/arc deletions, arc weight increases
  - Typically more computationally challenging

#### DYNAMIC ALGORITHMS FOR 2-HOP-COVER LABELINGS

- INCREMENTAL ALGORITHM [Akiba+, WWW 2014]
- **DECREMENTAL ALGORITHM(S)** [D'Angelo, D'Emidio, Frigioni, ACM JEA 2019] [D'Emidio, MDPI Algorithms 2020]



### Incremental Algorithm (RESUME-2HC) [Akiba+ WWW 2014]



Input: Arc (x, y) undergoes incremental update foreach  $v_i \in L(u) \cup L(v)$  do

- **2 RESUME** BFS/Dijkstra's rooted at  $v_i$  from vertices x and y;
  - ADD new pairs if pruning test passed;

#### MAIN FEATURES:

3

- LAZY ALGORITHM: outdated entries NOT REMOVED
- RESUME-2HC only ADDS SHORTER DISTANCES induced by incremental updates
  - **REMOVING** non-shortest-path distances is computationally expensive
- **CORRECTNESS** holds since query algo searches for minimum
- **LABELING SIZE** inevitably grows with number of updates
- $\Longrightarrow$  Minimality not preserved



### Incremental Algorithm (RESUME-2HC) [Akiba+ WWW 2014]



Worst case running time:  $\mathcal{O}(n \times \text{Dijkstra's})$ 

- IN PRACTICE
- VERY EFFECTIVE, on all tested inputs
- MILLISECONDS for updating extremely large labelings
- Whereas PLL takes HOURS OF REPREPROCESSING

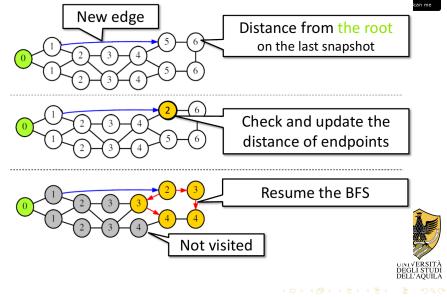
**OPEN PROBLEM:** design algorithm that **does not break minimality** 

PERIODICAL REPROCESSING necessary if labeling size "grows too much" (performance degrades over time)



### Example of RESUME-2HC execution





### Decremental Algorithm(s)

[D'Angelo, D'Emidio, Frigioni, ACM JEA 2019][D'Emidio, MDPI Algorithm 2020]



#### DECREMENTAL OPERATIONS MORE difficult to handle: OUTDATED ENTRIES MUST BE REMOVED

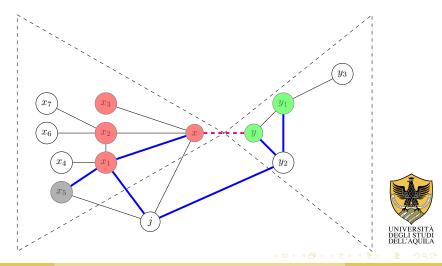
otherwise correctness not guaranteed

DECREMENTAL ALGO #1 (BIDIR-2HC) – [D'Angelo, D'Emidio, Frigioni, ACM JEA 2019]

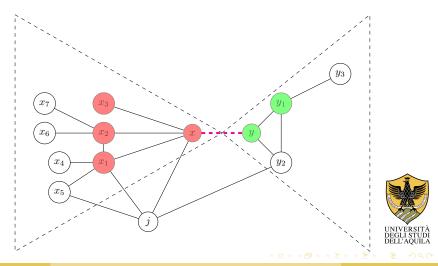
#### THREE PHASES

- 1. **IDENTIFICATION OF AFFECTED VERTICES** (potentially containing outdated entries)
  - use induced paths
- 2. REMOVAL of outdated (w/ binary search)
- RESTORE OF COVER PROPERTY by suited SP visits (in order) rooted at affected vertex

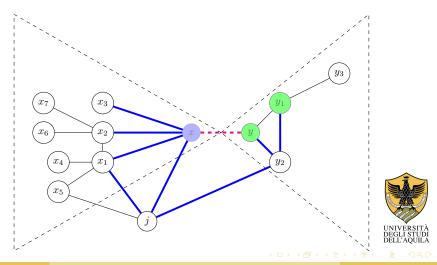
IDENTIFICATION: red/green vs gray vertices connected by s-paths containing/not containing modified arc (can be checked via content of label sets)



#### **REMOVAL** of green entries from red outgoing labels and red entries from green incoming labels (linear scan)



**Restore** one **forward** visit (of G) per **red** vertex one **backward** visit (of  $G^T$ ) per **green** vertex (to **re-cover** pairs)





#### Worst case running time: $\mathcal{O}(nm\log n + n^3)$

- Looks bad but in practice RATHER EFFECTIVE IN ALL INSTANCES
- At most, on average, TENS OF SECONDS for updating extremely large labelings
- Where PLL takes HOURS FOR REPREPROCESSING

#### PROBLEM: SIOW ON SOME SPARSE, WEIGHTED DIGRAPHS

Not so rare cases slower than from scratch (even if better on average)



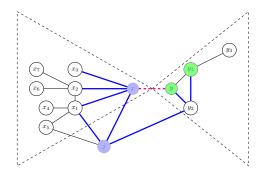
Mattia D'Emidio

#### **REASON: less effective pruning** mechanism

- Leads to unnecessary exploration of parts of the graph
- Large fractions execution time spent on this step (PROFILING)

#### LESS EFFECTIVE PRUNING

- Visits traverse non-affected vertices
- Pruning can stop visit only for pairs of affected vertices
- **VISIT** from x to y **CANNOT STOP** j (although x and j are covered)





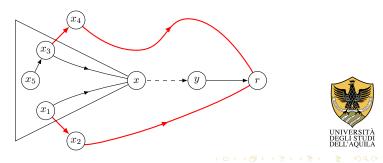


DECREMENTAL ALGO #2 (QUEUE-2HC) - [D'Emidio, Algorithms 2019]

#### MAIN DIFFERENCES:

Scan me

- **IDENTIFICATION** and **REMOVAL** combined in single step (use induced trees)
- **RESTORING DOES NOT TRAVERSE** unchanged vertices
- Exploits label entries of unchanged vertices to AVOID UNNECESSARY EX-PLORATIONS (such entries encode shortest paths in new graph)
- Can be used to **re-cover pairs**
- **EVALUATES** them via **PRIORITY QUEUE**, in order



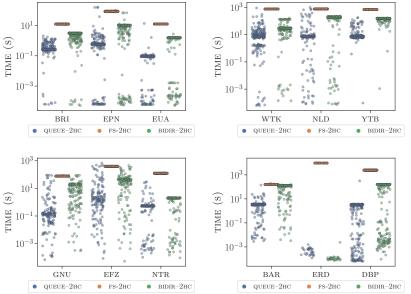
### **Some Experimentation**



| Dataset             | Network Type          | <b>V</b> | E        | avg deg | S | D | W |
|---------------------|-----------------------|----------|----------|---------|---|---|---|
| CAIDA (CAI)         | Ethernet              | 3.20e+04 | 4.01e+04 | 2.51    | 0 | 0 | ٠ |
| LUXEMBOURG (LUX)    | Road                  | 3.06e+04 | 7.55e+04 | 4.11    | 0 | ٠ | • |
| WGTGNUTELLA (GNU)   | Peer2Peer             | 6.26e+04 | 1.48e+05 | 4.73    | 0 | ٠ | • |
| Brightkite (bkt)    | Location-based        | 5.82e+04 | 2.14e+05 | 7.35    | 0 | 0 | 0 |
| EFZ (EFZ)           | Railway               | 1.25e+05 | 4.02e+05 | 6.43    | 0 | ٠ | ٠ |
| EU-ALL (EUA)        | EMAIL                 | 2.65e+05 | 4.19e+05 | 2.77    | 0 | ٠ | 0 |
| Epinions (epn)      | Social                | 1.32e+05 | 8.41e+05 | 12.76   | 0 | ٠ | 0 |
| Barabási-A. (baa)   | Synthetic (Power-Law) | 6.32e+05 | 1.00e+06 | 3.17    | ٠ | 0 | ٠ |
| web-NotreDame (NTR) | HyperLinks            | 3.26e+05 | 1.09e+06 | 6.69    | 0 | 0 | 0 |
| NETHERLANDS (NLD)   | Road                  | 8.92e+05 | 2.28e+06 | 5.11    | 0 | ٠ | • |
| YouTube (утв)       | Social                | 1.13e+06 | 2.99e+06 | 5.26    | 0 | 0 | 0 |
| WikiTalk (wtk)      | COMMUNICATION         | 2.39e+06 | 5.02e+06 | 4.19    | 0 | ٠ | 0 |
| Human-Genome (bio)  | Biological            | 1.43e+04 | 9.03e+06 | 1262.94 | 0 | 0 | • |
| AS-Skitter (ski)    | Computer              | 1.70e+06 | 1.11e+07 | 13.08   | 0 | 0 | 0 |
| DBPedia (dbp)       | Knowledge             | 3.97e+06 | 1.29e+07 | 6.97    | 0 | ٠ | 9 |
| Erdős-Rényi (erd)   | Synthetic (Uniform)   | 1.00e+04 | 2.50e+07 | 2499.11 | • | 9 |   |



### **Some Experimentation**



On Mining Distances out of Massive Time-Evolving Graphs

44 / 48

ERSITÀ I STUDI AQUILA

#### **OPEN (ON-GOING) WORK**



- MINIMALITY PRESERVING incremental algorithm
- **IMPROVE** further decremental algorithm, or find some lower bound
- REFINE theoretical analysis (output bounded sense?)
  - Theoretical foundations to explain inaccuracy of worst case
- BATCH algorithms
- ATTACK other big time-evolving graph mining problems via similar techniques (or adapt dynamic algo to relevant special cases e.g. TIMETABLE QUERIES)
- DISTRIBUTED preprocessing/dynamic algorithms
- STRENGTHEN experimental results
  - More inputs
  - Better evaluation of RXL/CRXL (adaptation of dyn algo?)
  - Evaluation of apx algo



### NetworKit: key features in this context GRAPHS

- **Easy, effective** graph manipulation/processing tools
- All basic graph algorithms, also EASILY CUSTOMIZABLE
- Support for graph update operations

#### **NETWORK ANALYSIS**

- PERFORMANCE-CRITICAL ALGORITHMS implemented in C++/OpenMP
- **CENTRALITY MEASURES** (degree distrib. in  $\mathcal{O}(n)$ , easily parallelizable)
- IMPLEMENTATION OF VERY RECENTLY INTRODUCED ALGORITHMS: parallel implementations of two approx algorithms for Betweenness centrality

#### **GRAPH GENERATORS/INPUT INTERFACES**

- Erdös-Renyi Model, Barabasi-Albert models for random graphs
- Readers for datasets from known repositories (SNAP, Konect)

#### INTEGRATION WITH PYTHON FOR DATA ANALYSIS AND INTEROPERABILITY

pandas, numpy, scipy, networkx

# For EDUCATIONAL PURPOSES (courses: big data processing, algorithmengineering)

interactive workflow and seamless Python integration







### (Some) Publications supported by NetworKit



M. D'Emidio, I. Khan, D. Frigioni: Journey Planning Algorithms for Massive Delay-Prone Transit Networks. Algorithms 13(1): 2 (2020)

M. D'Emidio: Faster Algorithms for Mining Shortest-Path Distances from Massive Time-Evolving Graphs. Algorithms 13(8): 191 (2020)

G. D'Angelo, M. D'Emidio, D. Frigioni: Fully Dynamic 2-Hop Cover Labeling. ACM J. Exp. Algorithmics 24(1): 1.6:1-1.6:36 (2019)

M. D'Emidio, I. Khan: Dynamic Public Transit Labeling. ICCSA (1) 2019: 103-117





### Thanks for your attention

#### Q&A

## mattia.demidio@{univaq,gssi}.it www.mattiademidio.com



Mattia D'Emidio

On Mining Distances out of Massive Time-Evolving Graphs